Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plants (Basel) ; 13(6)2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38592775

RESUMO

A significant threat to the ongoing rise in temperature caused by global warming. Plants have many stress-resistance mechanisms, which is responsible for maintaining plant homeostasis. Abiotic stresses largely increase gaseous molecules' synthesis in plants. The study of gaseous signaling molecules has gained attention in recent years. The role of gaseous molecules, such as nitric oxide (NO), hydrogen sulfide (H2S), carbon dioxide (CO2), carbon monoxide (CO), methane (CH4), and ethylene, in plants under temperature high-temperature stress are discussed in the current review. Recent studies revealed the critical function that gaseous molecules play in controlling plant growth and development and their ability to respond to various abiotic stresses. Here, we provide a thorough overview of current advancements that prevent heat stress-related plant damage via gaseous molecules. We also explored and discussed the interaction of gaseous molecules. In addition, we provided an overview of the role played by gaseous molecules in high-temperature stress responses, along with a discussion of the knowledge gaps and how this may affect the development of high-temperature-resistant plant species.

2.
Plant Physiol Biochem ; 207: 108437, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38368727

RESUMO

The gaseous signaling molecules, ethylene (ET) and hydrogen sulfide (H2S) are well known for their ability to mitigate abiotic stress, but how they interact with mineral nutrients under heat stress is unclear. We have studied the involvement of ET and H2S in adaptation of heat stress on the availability of sulfur (S) levels in rice (Oryza sativa L.). Heat stress (40 °C) negatively impacted growth and photosynthetic-sulfur use efficiency (p-SUE), with accumulation of reactive oxygen species (ROS) in six rice cultivars, namely PS 2511, Birupa, Nidhi, PB 1509, PB 1728, and Panvel. Supplementation of S at 2.0 mM SO42- in the form of MgSO4, improved growth and photosynthetic attributes more than 1.0 mM SO42- under control (28 °C), and mitigated heat stress effects more prominently in PS 2511 (heat-tolerant) than in PB 1509 (heat-sensitive) cultivar. The higher heat stress mitigation potential of 2.0 mM SO42- in heat-tolerant cultivar was correlated with higher S-assimilation, activity of antioxidant enzymes, stomatal (stomatal conductance) and non-stomatal limitations, activity of carbonic anhydrase and Rubisco, and mesophyll conductance. The use of norbornadiene (NBD) and hypotaurine (HT), ET and H2S inhibitors, respectively, resulted in the lowest values for photosynthetic efficiency, stomatal and non-stomatal factors, implying the mediation of ET and H2S in heat stress acclimation. The connectivity of ET and H2S with S-assimilation through a common metabolite cysteine (Cys) improved heat stress adaptation in which H2S acted downstream to ET-mediated responses. Thus, the better adaptability of rice plants to heat stress may be obtained through modulation of ET and H2S via S.


Assuntos
Sulfeto de Hidrogênio , Oryza , Oryza/metabolismo , Sulfeto de Hidrogênio/metabolismo , Resposta ao Choque Térmico , Enxofre/metabolismo , Etilenos , Aclimatação
3.
Biomolecules ; 14(1)2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38254690

RESUMO

Ethylene is an essential plant hormone, critical in various physiological processes. These processes include seed germination, leaf senescence, fruit ripening, and the plant's response to environmental stressors. Ethylene biosynthesis is tightly regulated by two key enzymes, namely 1-aminocyclopropane-1-carboxylate synthase (ACS) and 1-aminocyclopropane-1-carboxylate oxidase (ACO). Initially, the prevailing hypothesis suggested that ACS is the limiting factor in the ethylene biosynthesis pathway. Nevertheless, accumulating evidence from various studies has demonstrated that ACO, under specific circumstances, acts as the rate-limiting enzyme in ethylene production. Under normal developmental processes, ACS and ACO collaborate to maintain balanced ethylene production, ensuring proper plant growth and physiology. However, under abiotic stress conditions, such as drought, salinity, extreme temperatures, or pathogen attack, the regulation of ethylene biosynthesis becomes critical for plants' survival. This review highlights the structural characteristics and examines the transcriptional, post-transcriptional, and post-translational regulation of ACS and ACO and their role under abiotic stress conditions. Reviews on the role of ethylene signaling in abiotic stress adaptation are available. However, a review delineating the role of ACS and ACO in abiotic stress acclimation is unavailable. Exploring how particular ACS and ACO isoforms contribute to a specific plant's response to various abiotic stresses and understanding how they are regulated can guide the development of focused strategies. These strategies aim to enhance a plant's ability to cope with environmental challenges more effectively.


Assuntos
Aminoácido Oxirredutases , Liases , Óxido Nítrico Sintase , Aminoácido Oxirredutases/genética , Ácidos Carboxílicos , Etilenos , Estresse Fisiológico , Fenômenos Fisiológicos Vegetais/genética
4.
Environ Pollut ; 341: 122886, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-37952923

RESUMO

Heavy metal (HM) contamination has emerged as one of the most damaging abiotic stress factors due to their prominent release into the environment through industrialization and urbanization worldwide. The increase in HMs concentration in soil and the environment has invited attention of researchers/environmentalists to minimize its' impact by practicing different techniques such as application of phytohormones, gaseous molecules, metalloids, and essential nutrients etc. Silicon (Si) although not considered as the essential nutrient, has received more attention in the last few decades due to its involvement in the amelioration of wide range of abiotic stress factors. Silicon is the second most abundant element after oxygen on earth, but is relatively lesser available for plants as it is taken up in the form of mono-silicic acid, Si(OH)4. The scattered information on the influence of Si on plant development and abiotic stress adaptation has been published. Moreover, the use of nanoparticles for maintenance of plant functions under limited environmental conditions has gained momentum. The current review, therefore, summarizes the updated information on Si nanoparticles (SiNPs) synthesis, characterization, uptake and transport mechanism, and their effect on plant growth and development, physiological and biochemical processes and molecular mechanisms. The regulatory connect between SiNPs and phytohormones signaling in counteracting the negative impacts of HMs stress has also been discussed.


Assuntos
Metaloides , Metais Pesados , Poluentes do Solo , Silício/farmacologia , Reguladores de Crescimento de Plantas , Metais Pesados/toxicidade , Plantas/química , Poluentes do Solo/química
5.
Plants (Basel) ; 12(17)2023 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-37687406

RESUMO

Melatonin is a pleiotropic, nontoxic, regulatory biomolecule with various functions in abiotic stress tolerance. It reverses the adverse effect of heat stress on photosynthesis in plants and helps with sulfur (S) assimilation. Our research objective aimed to find the influence of melatonin, along with excess sulfur (2 mM SO42-), in reversing heat stress's impacts on the photosynthetic ability of the mustard (Brassica juncea L.) cultivar SS2, a cultivar with low ATP-sulfurylase activity and a low sulfate transport index (STI). Further, we aimed to substantiate that the effect was a result of ethylene modulation. Melatonin in the presence of excess-S (S) increased S-assimilation and the STI by increasing the ATP-sulfurylase (ATP-S) and serine acetyltransferase (SAT) activity of SS2, and it enhanced the content of cysteine (Cys) and methionine (Met). Under heat stress, melatonin increased S-assimilation and diverted Cys towards the synthesis of more reduced glutathione (GSH), utilizing excess-S at the expense of less methionine and ethylene and resulting in plants' reduced sensitivity to stress ethylene. The treatment with melatonin plus excess-S increased antioxidant enzyme activity, photosynthetic-S use efficiency (p-SUE), Rubisco activity, photosynthesis, and growth under heat stress. Further, plants receiving melatonin and excess-S in the presence of norbornadiene (NBD; an ethylene action inhibitor) under heat stress showed an inhibited STI and lower photosynthesis and growth. This suggested that ethylene was involved in the melatonin-mediated heat stress reversal effects on photosynthesis in plants. The interaction mechanism between melatonin and ethylene is still elusive. This study provides avenues to explore the melatonin-ethylene-S interaction for heat stress tolerance in plants.

6.
Plant Sci ; 336: 111835, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37611833

RESUMO

Soil salinity is a global issue that limits plant growth in agricultural fields and contributes to food crisis. Salt stressors impede plant's ionic, osmotic, and oxidative balance, as well as a variety of physiological functions. Exposure to salinity stress manifest considerable ROS clustering, entailing modification in performance of various organelles. To deal with salinity, plants use a variety of coping strategies, such as osmoregulation, ion-homeostasis, increased antioxidant synthesis, and so on. Nitric oxide (NO) is a pivotal signalling molecule that helps facilitate salt stress-induced physiological plant responses. A variety of evidences point to NO being produced under similar stress conditions and with similar kinetics as hydrogen peroxide (H2O2). The interplay between H2O2 and NO has important functional implications for modulating plant transduction processes. Besides, NO and calcium (Ca2+)-dependent pathways also have some connection in salt stress response mechanisms. Extensive crosstalk between NO and Ca2+ signalling pathways is investigated, and it suggests that almost every type of Ca2+ channel is under the tight control of NO, and NO acts as a Ca2+ mobilising compound and aids in signal reliance. The review provides insights into understanding recent advances regarding NO's, Ca2+ and H2O2 role in salt stress reduction with entwine signaling mechanisms.


Assuntos
Peróxido de Hidrogênio , Óxido Nítrico , Óxido Nítrico/metabolismo , Peróxido de Hidrogênio/metabolismo , Cálcio/metabolismo , Plantas/metabolismo , Estresse Salino , Salinidade , Estresse Fisiológico
8.
Physiol Plant ; 175(3): e13945, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37265249

RESUMO

In plants, sulfur plays a critical role in the formation of important biomolecules such as cysteine, methionine, and tripeptide glutathione. Thiol groups, composed of sulfur, are essential to numerous metabolic processes. The easy and reversible oxidation and reduction of thiol groups have drawn attention to the redox regulation of cellular metabolism. Reactive sulfur species (RSS), including hydrogen sulfide (H2 S), persulfides, and polysulfides, are synthetized in all living organisms, mainly from cysteine, and have been recognized in the last two decades as very important molecules in redox regulation. RSS are considered potent signaling molecules, being involved in the regulation of virtually all aspects of cell function. With regard to stress, reactive species and the antioxidant machinery maintain a delicate balance that gets disturbed under stress conditions, wherein reactive species biosynthesis, transportation, scavenging, and overall metabolism become decisive for plant survival. While reactive oxygen and nitrogen species have been much discussed over recent years, research into RSS biosynthesis, signaling, and relation to abiotic stresses is still nascent. RSS evolved long before reactive oxygen species, and because both are metabolized by catalase, it has been suggested that "antioxidant" enzymes originally evolved to regulate RSS and may still do so today. In this review, we have tried to summarize the generation, signaling, and interaction of RSS in plant systems and to discuss in detail the roles under various abiotic stresses.


Assuntos
Cisteína , Sulfeto de Hidrogênio , Cisteína/metabolismo , Sulfeto de Hidrogênio/metabolismo , Plantas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Antioxidantes/metabolismo , Estresse Fisiológico , Compostos de Sulfidrila/metabolismo , Enxofre/metabolismo
9.
Sci Rep ; 13(1): 7468, 2023 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-37156928

RESUMO

Melatonin (MT) and methyl jasmonate (MeJA) play important roles in the adaptation of plants to different stress factors by modulating stress tolerance mechanisms. The present study reports the involvement of MT (100 µM) in MeJA (10 µM)-induced photosynthetic performance and heat stress acclimation through regulation of the antioxidant metabolism and ethylene production in wheat (Triticum aestivum L.) plants. Plants exposed to 40 °C for 6 h per day for 15 days and allowed to retrieve at 28 °C showed enhanced oxidative stress and antioxidant metabolism, increased 1-aminocyclopropane-1-carboxylic acid (ACC) synthase (ACS) activity and ethylene production, and decreased photosynthetic performance. In contrast, the exogenously applied MT and MeJA reduced oxidative stress through improved S-assimilation (+ 73.6% S content), antioxidant defense system (+ 70.9% SOD, + 115.8% APX and + 104.2% GR, and + 49.5% GSH), optimized ethylene level to 58.4% resulting in improved photosynthesis by 75%. The use of p-chlorophenyl alanine, a MT biosynthesis inhibitor along with MeJA in the presence of heat stress reduced the photosynthetic performance, ATP-S activity and GSH content, substantiated the requirement of MT in the MeJA-induced photosynthetic response of plants under heat stress. These findings suggest that MeJA evoked the plant's ability to withstand heat stress by regulating the S-assimilation, antioxidant defense system, and ethylene production, and improving photosynthetic performance was dependent on MT.


Assuntos
Antioxidantes , Melatonina , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Triticum/metabolismo , Etilenos/metabolismo , Fotossíntese , Estresse Oxidativo , Resposta ao Choque Térmico
10.
Sci Rep ; 13(1): 6858, 2023 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-37100855

RESUMO

The present study demonstrated that exogenously-sourced nitric oxide (as SNP, sodium nitroprusside; NO donor) and sulfur (S) protected photosynthesis against chromium (Cr) stress in wheat (Triticum aestivum L. cv. HD 2851). Plants grown with 100 µM Cr exhibited higher reactive oxygen species (ROS) production, resulting in photosynthetic damage. The individual application of 50 µM NO increased carbohydrate metabolism as well as photosynthetic parameters, antioxidant system with higher transcriptional gene levels that encode the key enzymes for the Calvin cycle under Cr stress. These effects were more prominent when NO was applied with 1.0 mM SO42-. An increase in the reduced glutathione (GSH) content obtained with NO was further enhanced by S and resulted in higher protection against Cr stress. The protective effect of NO with S against Cr toxicity on photosynthesis was reversed when buthionine sulfoximine (BSO; GSH biosynthetic inhibitor) was used. Application of BSO reversed the impact of NO plus S on photosynthesis under Cr stress, verifying that the ameliorating effect of NO was through S-assimilation and via GSH production. Thus, the availability of S to NO application can help reduce Cr toxicity and protect photosynthetic activity and expression of the Calvin cycle enzymes in leaves through the GSH involvement.


Assuntos
Cromo , Óxido Nítrico , Cromo/toxicidade , Cromo/metabolismo , Óxido Nítrico/metabolismo , Triticum/metabolismo , Fotossíntese , Metabolismo dos Carboidratos , Antioxidantes/metabolismo , Glutationa/metabolismo , Enxofre/farmacologia , Enxofre/metabolismo , Suplementos Nutricionais , Estresse Oxidativo
11.
Plants (Basel) ; 12(6)2023 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-36986944

RESUMO

The effects of exogenously-sourced NO (nitric oxide, as 100 µM SNP) and proline (50 mM) in the protection of the photosynthetic performance of wheat (Triticum aestivum L.) plants against heat stress were investigated. The study focused on the mechanisms of proline accumulation, activity, gene expression of antioxidant enzymes, and NO generation. Plants were exposed to a temperature of 40 °C for 6 h per day over 15 days, then allowed to recover at 28 °C. Heat-stressed plants showed increased oxidative stress, with higher levels of H2O2 and TBARS (thiobarbituric acid reactive substances) and increased proline accumulation, ACS activity, ethylene evolution, and NO generation, which in turn leads to increased accumulation of antioxidant enzymes and reduced photosynthetic attributes. In the tested wheat cultivar, the exogenous application of SNP and proline under heat stress improved the photosynthesis and reduced oxidative stress by enhancing the enzymatic antioxidant defense system. Potentially, the promoter AOX (alternative oxidase) played a role in maintaining redox homeostasis by lowering H2O2 and TBARS levels. The genes for GR antioxidant and photosystem II core protein encoding psbA and psbB were highly up-regulated in nitric oxide and proline treated heat-stressed plants, indicating that ethylene positively impacted photosynthesis under high temperature stress. Moreover, nitric oxide supplementation under high temperature stress optimized ethylene levels to regulate the assimilation and metabolism of proline and the antioxidant system, lowering the adverse effects. The study showed that nitric oxide and proline increased high temperature stress tolerance in wheat by increasing the osmolytes accumulation and the antioxidant system, resulting in enhanced photosynthesis.

12.
Physiol Plant ; 174(6): e13832, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36437590

RESUMO

The involvement of melatonin in the regulation of salt stress acclimation has been shown in plants in this present work. We found that the GOAL cultivar of wheat (Triticum aestivum L.) was the most salt-tolerant among the investigated cultivars, GOAL, HD-2967, PBW-17, PBW-343, PBW-550, and WH-1105 when screened for tolerance to 100 mM NaCl. The application of 100 µM melatonin maximally reduced oxidative stress and improved photosynthesis in the cv. GOAL. Melatonin supplementation reduced salt stress-induced oxidative stress by upregulating the activity of antioxidant enzymes, such as superoxide dismutase (SOD), ascorbate peroxidase (APX), and glutathione reductase (GR), and reduced the glutathione (GSH) production. This resulted in increased membrane stability, photosynthetic-N use efficiency and photosynthesis in plants. The application of 50 µM of the ethylene biosynthesis inhibitor aminoethoxyvinylglycine (AVG) in the presence of melatonin and salt stress increased H2 O2 content but reduced GR activity and GSH, photosynthesis, and plant dry mass. This signifies that melatonin-mediated salt stress tolerance was related to ethylene synthesis as it improved antioxidant activity and photosynthesis of plants under salt stress. Thus, the interaction of melatonin and ethylene bears a prominent role in salt stress tolerance in wheat and can be used to develop salt tolerance in other crops.


Assuntos
Antioxidantes , Melatonina , Antioxidantes/metabolismo , Melatonina/farmacologia , Triticum/metabolismo , Fotossíntese , Etilenos , Estresse Oxidativo , Glutationa/metabolismo
13.
Plants (Basel) ; 11(22)2022 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-36432860

RESUMO

Phytohormones have a role in stress adaptation. The major mechanism underlying the role of exogenously-sourced nitric oxide (NO; as sodium nitroprusside, SNP: 50.0 µM) and salicylic acid (SA; 0.5 mM) in the presence of 2.0 mM SO4-2 was assessed in heat stress (HS; 40 °C for 6 h daily for 15 days) tolerance in wheat (Triticum aestivum L. cv. HD-3226). The cultivar HD-3226 possessed high photosynthetic sulfur use efficiency (p-SUE) among the six cultivars screened. Plants grown under HS exhibited an increased content of reactive oxygen species (ROS; including superoxide radical and hydrogen peroxide) and extent of lipid peroxidation with a consequent reduction in photosynthesis and growth. However, both NO and SA were found to be protective against HS via enhanced S assimilation. Their application reduced oxidative stress and increased the activity of antioxidant enzymes. NO or SA supplementation along with S under HS recovered the losses and improved photosynthesis and growth. The use of SA inhibitor (2-aminoindane-2-phosphonic acid; AIP) and NO scavenger (cPTIO) confirmed that the mitigating effects of SA and NO involved induction in S assimilation.

14.
Plants (Basel) ; 11(19)2022 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-36235470

RESUMO

Improving plant resilience to changing environmental conditions is the primary focus of today's scientific research globally. It is essential to find various strategies for the better survival of plants with higher resistance potential to climate change. Strigolactones (SLs) are multifunctional ß-carotene derivative molecules that determine a range of plant growth and development aspects, such as root architecture, shoot branching, chlorophyll synthesis, and senescence. SLs facilitate strong defense responses against drought, salinity, heavy metal, nutrient starvation, and heat stress. The SLs trigger other hormonal-responsive pathways and determine plant resilience against stressful environments. This review focuses on the mechanisms regulated by SLs and interaction with other plant hormones to regulate plant developmental processes and SLs' influence on the mitigation of plant damage under abiotic stresses. A better understanding of the signaling and perception of SLs may lead to the path for the sustainability of plants in the changing environmental scenario. The SLs may be considered as an opening door toward sustainable agriculture.

15.
Plants (Basel) ; 11(17)2022 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-36079592

RESUMO

Ethylene is a gaseous plant growth hormone that regulates various plant developmental processes, ranging from seed germination to senescence. The mechanisms underlying ethylene biosynthesis and signaling involve multistep mechanisms representing different control levels to regulate its production and response. Ethylene is an established phytohormone that displays various signaling processes under environmental stress in plants. Such environmental stresses trigger ethylene biosynthesis/action, which influences the growth and development of plants and opens new windows for future crop improvement. This review summarizes the current understanding of how environmental stress influences plants' ethylene biosynthesis, signaling, and response. The review focuses on (a) ethylene biosynthesis and signaling in plants, (b) the influence of environmental stress on ethylene biosynthesis, (c) regulation of ethylene signaling for stress acclimation, (d) potential mechanisms underlying the ethylene-mediated stress tolerance in plants, and (e) summarizing ethylene formation under stress and its mechanism of action.

16.
Antioxidants (Basel) ; 11(8)2022 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-36009197

RESUMO

Rising temperatures worldwide due to global climate change are a major scientific issue at present. The present study reports the effects of gaseous signaling molecules, ethylene (200 µL L-1; 2-chloroethylphosphonic acid; ethephon, Eth), nitric oxide (NO; 100 µM sodium nitroprusside; SNP), and hydrogen sulfide (H2S; 200 µM sodium hydrosulfide, NaHS) in high temperature stress (HS) tolerance, and whether or not H2S contributes to ethylene or NO-induced thermo-tolerance and photosynthetic protection in rice (Oryza sativa L.) cultivars, i.e., Taipei-309, and Rasi. Plants exposed to an HS of 40 °C for six h per day for 15 days caused a reduction in rice biomass, associated with decreased photosynthesis and leaf water status. High temperature stress increased oxidative stress by increasing the content of hydrogen peroxide (H2O2) and thiobarbituric acid reactive substance (TBARS) in rice leaves. These signaling molecules increased biomass, leaf water status, osmolytes, antioxidants, and photosynthesis of plants under non-stress and high temperature stress. However, the effect was more conspicuous with ethylene than NO and H2S. The application of H2S scavenger hypotaurine (HT) reversed the effect of ethylene or NO on photosynthesis under HS. This supports the findings that the ameliorating effects of Eth or SNP involved H2S. Thus, the presence of H2S with ethylene or NO can enhance thermo-tolerance while also protecting plant photosynthesis.

17.
Front Plant Sci ; 13: 852704, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35651777

RESUMO

Arsenic (As) stress provokes various toxic effects in plants that disturbs its photosynthetic potential and hampers growth. Ethylene and selenium (Se) have shown regulatory interaction in plants for metal tolerance; however, their synergism in As tolerance through modification of the antioxidant enzymes and hormone biosynthesis needs further elaboration. With this in view, we investigated the impact of ethylene and Se in the protection of photosynthetic performance against As stress in mustard (Brassica juncea L.). Supplementation with ethephon (2-chloroethylphosphonic acid; ethylene source) and/or Se allayed the negative impact of As-induced toxicity by limiting As content in leaves, enhancing the antioxidant defense system, and decreasing the accumulation of abscisic acid (ABA). Ethylene plus Se more prominently regulated stomatal behavior, improved photosynthetic capacity, and mitigated As-induced effects. Ethephon in the presence of Se decreased stress ethylene formation and ABA accumulation under As stress, resulting in improved photosynthesis and growth through enhanced reduced glutathione (GSH) synthesis, which in turn reduced the oxidative stress. In both As-stressed and non-stressed plants treated with ethylene action inhibitor, norbornadiene, resulted in increased ABA and oxidative stress with reduced photosynthetic activity by downregulating expression of ascorbate peroxidase and glutathione reductase, suggesting the involvement of ethylene in the reversal of As-induced toxicity. These findings suggest that ethephon and Se induce regulatory interaction between ethylene, ABA accumulation, and GSH metabolism through regulating the activity and expression of antioxidant enzymes. Thus, in an economically important crop (mustard), the severity of As stress could be reduced through the supplementation of both ethylene and Se that coordinate for maximum stress alleviation.

18.
Biomolecules ; 12(5)2022 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-35625606

RESUMO

Plants encounter several abiotic stresses, among which heat stress is gaining paramount attention because of the changing climatic conditions. Severe heat stress conspicuously reduces crop productivity through changes in metabolic processes and in growth and development. Ethylene and hydrogen sulfide (H2S) are signaling molecules involved in defense against heat stress through modulation of biomolecule synthesis, the antioxidant system, and post-translational modifications. Other compounds containing the essential mineral nutrient sulfur (S) also play pivotal roles in these defense mechanisms. As biosynthesis of ethylene and H2S is connected to the S-assimilation pathway, it is logical to consider the existence of a functional interplay between ethylene, H2S, and S in relation to heat stress tolerance. The present review focuses on the crosstalk between ethylene, H2S, and S to highlight their joint involvement in heat stress tolerance.


Assuntos
Sulfeto de Hidrogênio , Etilenos/metabolismo , Resposta ao Choque Térmico , Sulfeto de Hidrogênio/metabolismo , Plantas/metabolismo , Enxofre/metabolismo
19.
Int J Mol Sci ; 23(3)2022 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-35162955

RESUMO

The effect of exogenously-applied ethylene sourced from ethephon (2-chloroethyl phosphonic acid)was studied on photosynthesis, carbohydrate metabolism, and high-temperature stress tolerance in Taipei-309 and Rasi cultivars of rice (Oryza sativa L.). Heat stress increased the content of H2O2 and thiobarbituric acid reactive substances (TBARS)more in Rasi than Taipei-309. Further, a significant decline in sucrose, starch, and carbohydrate metabolism enzyme activity and photosynthesis was also observed in response to heat stress. The application of ethephon reduced H2O2 and TBARS content by enhancing the enzymatic antioxidant defense system and improved carbohydrate metabolism, photosynthesis, and growth more conspicuously in Taipei-309 under heat stress. The ethephon application enhanced photosynthesis by up-regulating the psbA and psbB genes of photosystem II in heat-stressed plants. Interestingly, foliar application of ethephoneffectively down-regulated high-temperature-stress-induced elevated ethylene biosynthesis gene expression. Overall, ethephon application optimized ethylene levels under high-temperature stress to regulate the antioxidant enzymatic system and carbohydrate metabolism, reducing the adverse effects on photosynthesis. These findings suggest that ethylene regulates photosynthesis via carbohydrate metabolism and the antioxidant system, thereby influencing high-temperature stress tolerance in rice.


Assuntos
Antioxidantes/metabolismo , Metabolismo dos Carboidratos/efeitos dos fármacos , Compostos Organofosforados/farmacologia , Oryza/crescimento & desenvolvimento , Complexo de Proteína do Fotossistema II/genética , Etilenos/química , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Peróxido de Hidrogênio/metabolismo , Compostos Organofosforados/química , Oryza/efeitos dos fármacos , Oryza/genética , Oryza/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Fotossíntese/efeitos dos fármacos , Proteínas de Plantas/genética , Termotolerância , Tiobarbitúricos/metabolismo
20.
Plant Physiol Biochem ; 173: 68-75, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-35101796

RESUMO

Contamination of soil by heavy metals severely affects plant growth and causes soil pollution. While effects on plant growth have been investigated for metals taken individually or in groups, less is known about their comparative effects. In this study Arabidopsis thaliana seedlings were grown for 14 days in Petri dishes containing medium contaminated by six common heavy metals (Hg, Cd, Pb, Cu, Ni and Zn), at the minimum concentrations defined as toxic by the most recent EU legislation on contamination of agricultural soils. (a) Root structure and morphology, (b) metal composition and translocation, and (c) the levels of indole-3-acetic acid (IAA) and indole-3-butyric acid (IBA) were analyzed. Metals accumulated more in roots than in shoots, with concentrations that differed by several orders of magnitude depending on the metal: Cd (ca. 700 × and ca. 450 × in roots and shoots, respectively), Hg (150 × , 80 × ), Ni (50 × , 20 × ), Cu (48 × , 20 × ), Zn (23 × , 6 × ), and Pb (9 × , 4 × ). Responses were significant for at least nine of the ten root parameters (with the exception of Hg), and five of the six shoot parameters (with the exception of Zn). Cu and Zn induced respectively the strongest responses in root hormonal (up to ca. 240% the control values for IBA, 190% for IAA) and structural parameters (up to 210% for main root length, 330% for total lateral root length, 220% for number of root tips, 600% for total root surface, and from 2.5° to 26.0° of root growth angle). Regarding the shoots, the largest changes occurred for shoot height (down to 60% for Ni), rosette diameter (down to 45% for Hg), leaf number (up to 230% for Zn) and IBA (up to 240% for Pb and Cu). A microscope analysis revealed that shape and conformation of root hairs were strongly inhibited after Cd exposure, and enhanced under Hg and Pb. The results could have positive applications such as for defining toxicity thresholds (in phytoremediation) and acceptable concentration levels (for policies) for some of the most common heavy metals in agricultural soils.


Assuntos
Arabidopsis , Metais Pesados , Poluentes do Solo , Ácidos Indolacéticos , Metais Pesados/toxicidade , Solo , Poluentes do Solo/análise , Poluentes do Solo/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...